Radio Detection of Cosmic Particles with the SKA

Vrije

Brussel

Universiteit

<u>Tobias Winchen, Stijn Buitink, Justin D. Bray, Tim Huege,</u> Clancy W. James, Olaf Scholten, Frank G. Schröder, Anne Zilles For the SKA Focus Group on High Energy Cosmic Particles EWASS Greece, July 2016

Radio Emission From Air Showers

2

Current Radio Experiments

3

Radio is Ready for Astrophysics LETTER

A large light-mass component of cosmic rays at 10¹⁷–10^{17.5} electronvolts from radio observations

S. Buitink^{1,2}, A. Corstanje², H. Falcke^{2,3,4,5}, J. R. Hörandel^{2,4}, T. Hu O. Scholten^{8,9}, S. ter Veen³, S. Thoudam², T. N. G. Trinh⁸, J. Anders M. J. Bentum^{3,15}, G. Bernardi^{16,17}, P. Best¹⁸, A. Bonafede⁸, F. Breitlir H. R. Butcher²², D. Carbone²³, B. Ciardi²⁴, J. E. Conway²⁵, F. de Gas G. van Diepen³, S. Duscha³, J. Eislöffel²⁸, D. Engels²⁹, J. E. Enriquez M. A. Carrett^{3,22}, J. M. Grießmeier^{33,24}, A. W. Gunst³, M. P. van Haa M. Hoeft²⁸, A. Horneffer⁵, M. Iacobelli³, H. Intema^{32,35}, E. Juette²⁷, M. Kuniyoshi²⁸, G. Kuper³, J. van Leeuwen^{3,23}, G. M. Loose³, P. Mat D. McKay–Bukowski^{29,40}, J. P. McKean^{3,11}, M. Mevius^{3,13}, D. D. Mu M. Pandey–Pommier⁴², V. N. Pandey³, M. Fietka³⁰, R. Pizz o³, A. G. D. J. Schwarz⁴³, M. Serylak³⁰, J. Sluman³, O. Smirnov^{77,44}, B. W. St M. Tagger³³, Y. Tang³, C. Tasse^{44,46}, M. C. Toribio^{3,32}, R. Vermeulen S. J. Wijnholds³, M. W. Wise^{3,23}, O. Wucknitz⁵, S. Yatawatta³, P. Zar

Cosmic rays are the highest-energy particles found in nature. Measurements of the mass composition of cosmic rays with energies of 1017-1018 electronvolts are essential to understanding whether they have galactic or extragalactic sources. It has also been proposed that the astrophysical neutrino signal¹ comes from accelerators capable of producing cosmic rays of these energies². Cosmic rays initiate air showers-cascades of secondary particles in the atmosphere-and their masses can be inferred from measurements of the atmospheric depth of the shower maximum³ (X_{max}; the depth of the air shower when it contains the most particles) or of the composition of shower particles reaching the ground⁴. Current measurements⁵ have either high uncertainty, or a low duty cycle and a high energy threshold. Radio detection of cosmic rays6-8 is a rapidly developing technique⁹ for determining X_{max} (refs 10, 11) with a duty cycle of, in principle, nearly 100 per cent. The radiation is generated by the separation of relativistic electrons and positrons in the geomagnetic field and a negative charge excess in the shower front^{6,12}. Here we report radio measurements of X_{max} with a mean uncertainty of 16 grams per square centimetre for air showers

published in <mark>nature</mark>

Tobias Winchen - Cosmic Particles with the SKA

Air Shower Detection with LOFAR

Superterp Particle Detector at LOFAR • ~300 m diameter • 20 Scintillators • 7 x 48 LBA antennas Coincidence Trigger (16 / 20) LOFAR LBA Antenna Signal Envelop RMS **5s Buffer** (2 ms readout) **Offline Analysis of** Voltage Traces

High Precision with LOFAR

Ultimate Precision with the SKA

Ultimate Precision with the SKA

High density of antennas

- + Increased bandwidth
- = Measure rich details of individual air shower

Science Potential: Astrophysics

- Unprecedented precise composition measurement
- Increased duty cycle
- Increased energy range
- Will help to answer:
 - Which cosmic rays are galactic, which are extragalactic?
 - What are the sources of cosmic rays?
 - How are they accelerated?

Science Potential: Thunderstorms

Determine E-Field profile in thunderclouds Is lightning initiated by cosmic rays?

Science Potential: Particle Physics

 $\sqrt{s_{pp}}$ [eV] 10^{12}

 10^{13}

 10^{14}

 10^{15}

 10^{11}

 10^{10}

 10^{9}

10⁻⁵

pp center-of-mass energy 4 – 40 TeV

ZeV Scale with Lunar Observations

- Search for extreme energetic particles
- Form multiple beams on the Moon
- Search for ns pulses in time-series
- Anti coincidence to suppress RFI
- Analyze Faraday rotation and dispersion to check lunar origin
- Previous searches at Parkes, Westerbork, Lovell, ATCA, ...

12 Tobias Winchen - Cosmic Particles with the SKA

Challenges

- Data rate
 - → Trigger required
- Recover ns time resolution
- Analyse ns traces in real time
- LOFAR Lunar mode currently under development

Science Potential Lunar Showers: Astrophysics and New Physics

What is Needed?

- Air showers:
 - Station buffers with trigger
 (available in baseline design)
 - Particle detector array
- Lunar showers:
 - Fast realtime analysis of nano second time traces
 - \rightarrow Dedicated computing power
 - \rightarrow Tap into data stream
 - Antenna buffers with trigger
- Engineering change proposals under review (stage 4 of 6)

search

Conclusions

- SKA ultimate precision radio detector for cosmic ray physics
- Rich science Potential

Astrophysics / Thunderstorms / Particle physics / ...

Vrije

Brussel

ERLANGEN CENTRE

FOR ASTROPARTICLE

Universiteit

- SKA focus group on high energy cosmic particles
- Requires small engineering changes that are currently under investigation
 - Particle detectors
 - Buffers
 - Online computing
- Experience with LOFAR
 - No disturbance of astronomy operations
 - Low-level diagnostics of antennas

Niimegen

15 Tobias Winchen - Cosmic Particles with the SKA

The University of Manchester

Backup

Shower Footprint

Energy: 10¹⁷ eV Zenith: 36.87^o

Particle Detector Details

- 180 particle detectors of 3.6 m² area and 3 cm thickness may be available from KASCADE
- need 720 additional readout channels (4 per Scintillator), cf. 140,000 existing ones
- need 720 SiPMs, ensure RFI quietness
- possibly shield/bury part of detectors for muon separation

Buffer for Individual Antenna Signals

- 800 MHz sampling
- Aat least 8 bit, preferably 12 bit dynamic range
- Buffer depth determined by trigger latency (10 ms)
- 1.4 TeraBytes of buffer for 60,000 antennas
- In parallel with any other buffering activities (100% duty cycle)
- Read out 50 microseconds upon an external air shower trigger
- 7.2 GB per event for 60,000 antennas
- Estimate: 1 shower per minute at 10¹⁶ eV
 - 120 MB/s data stream small for SKA
 - But Poisson statistics results in bursts of 2.4 GiB/s for 3s every minute
 - Calculated: ~3% deadtime

Depth of Shower Maximum

Proton – Air Cross-Section

Data of the Pierre Auger Observatory

 $E = 10^{18} \text{ eV} - 10^{18.5} \text{ eV},$ center of mass energy: 57 TeV

Lunar Pulses

- Radiation emitted in Cherenkov cone
- Cherenkov angle == Angle of total reflection
- Upgoing shower required / rely on surface roughness
- Cherenkov cone is broader at low frequencies
- Also downgoing showers detectable
- Optimum in 100 200 MHz range (Scholten et al. 2006)
- Tobias Winchen Cosmic Particles with the SKA

Angular Resolution of Lunar Mode

- Limit observations to rim
- Possible Incident angles yield $\sim 5^{\circ}$ resolution
- Explicit reconstruction should do better